
Introduction and motivation
We present a fully automatic method of creating and encoding
ID mattes. 3D scenes consist of an organized hierarchy of
objects and relationships, and when 2D images are rendered
that information is not preserved. ID mattes attempt to
preserve organizational information by establishing a
correspondence between items in the 3D scene and particular
pixels in the image plane. Artists use this correspondence as
masks to modify the 3D scene’s items in 2D images.

Much effort is put into creating
ID mattes. Our method produces
a comprehensive set of ID mattes
automatically, without the need for
artist input. The resulting mattes
provide a better compromise
between compactness and accu-
racy than existing techniques. Our
method also provides a robust bi-
directional mapping between the
ID mattes and the corresponding
items in the 3D scene, conferring a
number of benefits.

Existing techniques

In RGBA Mattes, an ID matte
exclusively occupies a single
channel of an RGBA image (Figure
1b, 1c). The number of images
needed to provide compositors
adequate coverage quickly
accumulates. It can also be time-
consuming for 3D artists to set up
ID mattes, especially if they have
to guess which mattes will be
required.

Another approach is using a single
ID-coverage pair (Figure 1d, 1e).
These encode multiple ID mattes
together using two channels, ID
and coverage. The ID channel
encodes the ID of one object
per pixel. The coverage channel
encodes how much of the pixel’s
value is contributed by this object.
This method is unable to handle
cases where multiple objects per
pixel are important (Figure 1f).
Multiple objects sharing pixels is

very common; it occurs due to anti-aliasing, or when objects
are motion-blurred, out of focus, or transparent. It is possible
to guess the ID of the second object and use inverted
coverage, but this covers two objects at most. ID generation
is also an issue, as the renderer’s internal object ID may not
stay the same from shot to shot or even from frame to frame.

Our approach

In our approach we expand upon the ID-coverage pair
technique by using n ranked ID-coverage pairs to add support
for multiple objects per pixel. We also propose using a hashing
system for converting organizational monikers from the 3D
scene, such as object, namespace, and material names.

ID generation
In ID-coverage pairs, the identity of objects, or groupings
of objects must be represented by a single data value. This
value is known as the ID code, or ID. The canonical way of
identifying objects in a 3D scene is to use human-readable
string labels. Using a hash function, we simply convert these
already-existing labels into ID codes.

String labels are by definition artist-friendly, because they are
the same labels artists themselves use to identify objects in
a scene. They can also be used as indices for accessing 3D
scene components programmatically. In most productions,
the string labels do not change from frame to frame or from
shot to shot. Being stable, readable and indexable, these
labels are ideal candidates for generating useful ID codes.

Names

In our implementation, we use three
types of labels to generate three
separate IDs: namespaces, object
names, and material names. Objects
are individual polygon meshes,
curves, surfaces, etc. Namespaces
differentiate hierarchical groups
of objects, such as instances of an
asset that has been duplicated
several times. Material names are
taken from shaders assigned to
objects.

While object ID mattes and
namespace ID mattes provide
access to the scene hierarchy with
different levels of granularity,
material ID mattes provide access
to objects with similar physical
properties, such as all of the buttons
on a shirt.

At render time, object and material
names are typically provided with
the namespace as a prefix, using
a separator character. We process
these full object names (Figure 3)
into namespaces and short object
names. The material names are
processed similarly.

Hashing

As the renderer samples the image, the three processed
names are hashed to produce ID codes (Figure 2b). The IDs
are stored as three arbitrary output variables (AOVs) at the
sample level.

IDs can either be computed while sampling, or precomputed
and stored with the objects they are associated with. In
our implementation, we have opted to compute IDs while
sampling. This generally simplifies our system. To allow for
this, we have chosen the extremely small and fast hashing
algorithm, DJB2.

In addition to storing ID codes per-pixel, we also store the
processed names in a manifest, which allows us to recover the
full string names from the ID codes using a reverse lookup.
Using the manifest, we can provide descriptive names for ID
mattes and are able to index specific objects within the 3D
scene.

Figure 3: Names as
found in a scene,
processed to IDs
(represented by col-
ors). Two copies of
a “bunny” asset are
present.

PsyopFully automatic ID mattes with support for motion blur and transparencyJonah Friedman, Andrew C. Jones

(a) (b)

(c)

(d)

Figure 2: Samples on a pixel grid (a) have IDs computed and stored as an AOV (b). The samples are weight-
ed using a filter kernel (c). The sample weights for each ID are ranked (d). In this example, orange is ranked
highest. The weights will be the coverage values.

Fully automatic ID mattes with support for motion blur and transparency

Figure 1: Given a
beauty render (a)
an RGBA matte (b)
is used to generate
an ID matte (c) by
isolating one chan-
nel. Object IDs (d)
and coverage (e) are
used to generate an
ID matte for any ob-
ject, with artifacts (f).

(a)

(b)

(c)

(d)

(f)

(e)

Filtering and encoding
The data contained in the three ID AOVs (Figure 4) is
processed by a ranking sample filter. This algorithm produces
a mapping from ID values to weights in the pixel. It uses an
interchangeable filter kernel for weighting. Any filter kernel
used to filter the “beauty” image can be reused by our ranking
filter, allowing our extracted mattes to match the “beauty”
results.

To process a pixel, we compute a table of weights per ID, and
then rank the IDs by weight. We create the table by iterating
through all samples which contribute to the pixel. The weight
of each sample is computed using an arbitrary filter kernel,
such as Gaussian or Blackman-Harris (Figure 2c). The weight
is then added to the row of the table that contains a matching
ID value. If no match is found, a new ID is added to the table.

In the case that a sample represents a partially transparent
object, the sample will contain a number of sub-samples, each
with an ID and opacity value. The weight of each subsample
is the product of its own opacity, the combined transparency
of the sub-samples in front of it, and the result of the filter
kernel. Combined transparency can be computed as the
product of one minus opacity, over the set of sub-samples.

We treat the background of the scene as a null ID, signifying
empty samples. It is used when a sample does not collide
with an object or only collides with transparent objects.

Once all samples have been computed, the IDs are ranked by
the absolute value of their accumulated weights. This ensures
that only the IDs with the lowest weights are discarded if the
number of ID-coverage pairs is smaller than the number of
IDs in the table.

Encoding

We use multi-channel OpenEXR files to encode the data. Each
of our three AOVs is stored in a separate file, which includes
an arbitrary number of ID-coverage pairs and a manifest. Each
ID-coverage pair represents one rank, and one RGBA image
can contain two ranks in its four channels. The manifest is

simply a list of the processed names used to create the IDs
and is stored as metadata.

The depth value, or the number of ranks stored, can be set
to whatever is required. Each successive ID-coverage depth
layer tends to contain fewer objects than the previous. As a
result, each layer tends to be more compressible than the
previous, and increasing depth to accommodate localized
complexity is not very costly.

In our implementation, depth can be set by artists in 3D. The
default value is six, which is almost always sufficient in practice.
Although it is not required, we store a conventionally-filtered
RGB version to help artists visualize the ID data.

Matte extraction
Matte extraction is straightforward (Figure 5) and compu-
tationally inexpensive. Given an ID value, iterate through
the ID-coverage pairs. If the ID for a pixel matches the given
value, the associated coverage value is the matte value for
that pixel, and further pairs do not need to be checked.

To extract combined mattes for multiple specified IDs, iterate
through the ID coverage pairs. If the ID for a given pixel
matches any of the specified IDs, add the associated coverage
value to the matte value for that pixel.

Implementation details

A “keyable” RGB image is constructed in the compositing
software (Figure 4). This image’s red and green channels are
the conventionally-filtered versions of the ID data. The blue
channel is the ID channel from the first (highest ranked) ID-
coverage pair. When sampling a color for this “keyable” image
using an eye-dropper, the resulting blue channel is used as
the ID for extraction.

Since our system includes a bidirectional mapping between
ID values and object names, the tools can easily provide a
list of selected object names to artists and can also accept
lists of names as input. Artists can generate lists of names
interactively, using the eye-dropper tool to select and deselect
individual objects.

The lists of names generated in 2D not only allow for clear
communication with the 3D artist, but also can be used as
an index to apply changes directly to the 3D scene. This
workflow can be used to visualize changes to a 3D scene more
quickly than the usual approach of tweaking parameters and
rendering previews. Changes to a 3D scene can be tested
in motion or under variable lighting, without having to re-
render a sequence of frames for every round of edits. When
finished, the 2D adjustments can be applied to the shaders.

Since deploying the toolset, we have received positive
feedback from 3D artists and 2D artists alike. We have found
that artists are using ID mattes where they previously would
have resorted to other techniques, such as keying, rotoscopy,
or requesting changes in 3D. We have also seen larger
workflow benefits. Previously we would see a period at the
end of jobs where 2D artists would have to ask 3D artists for
more and more ID mattes. We no longer see this pattern. All
required mattes can be trivially extracted from our images. As
such, this is a production-proven replacement for practically
all ID mattes.

Acknowledgements
Tony Barbieri

Wellington Fan

Brendan Fitzgerald

Nisa Foster

Andy Gilbert

Vladimir Jankijevic

Tram Le-Jones

Jean-Francois Panisset

Solid Angle

Psyop

Figure 5: Three ranks of IDs (a) are tested for pixels matching an exact value (b). The associated cover-
age channels (c) are isolated to the region defined by the matching ID pixels (d). The sum of the isolated
coverage values from each rank is the extracted matte (e). The same area of the “beauty” render (f) for
comparison.

Figure 4: Three instances of the “keyable” image presented to artists, with matte selections in white, from the object IDs (a), namespace IDs (b), and material IDs (c),
extracted by “keying” a leaf.

Rank 1 Rank 2 Rank 3

ID (a)

Coverage (c)

ID Isolated (b)

Coverage
Isolated (d) (e) (f)

PsyopFully automatic ID mattes with support for motion blur and transparencyJonah Friedman, Andrew C. Jones

(b)(a) (c)

