
Introduction and motivation
We present a fully automatic method of creating and encoding 
ID mattes. 3D scenes consist of an organized hierarchy of 
objects and relationships, and when 2D images are rendered 
that information is not preserved. ID mattes attempt to 
preserve organizational information by establishing a 
correspondence between items in the 3D scene and particular 
pixels in the image plane. Artists use this correspondence as 
masks to modify the 3D scene’s items in 2D images. 

Much effort is put into creating 
ID mattes. Our method produces 
a comprehensive set of ID mattes 
automatically, without the need for 
artist input. The resulting mattes 
provide a better compromise 
between compactness and accu-
racy than existing techniques. Our 
method also provides a robust bi-
directional mapping between the 
ID mattes and the corresponding 
items in the 3D scene, conferring a 
number of benefits. 

Existing techniques

In RGBA Mattes, an ID matte 
exclusively occupies a single 
channel of an RGBA image (Figure 
1b, 1c). The number of images 
needed to provide compositors 
adequate coverage quickly 
accumulates. It can also be time-
consuming for 3D artists to set up 
ID mattes, especially if they have 
to guess which mattes will be 
required.

Another approach is using a single 
ID-coverage pair (Figure 1d, 1e). 
These encode multiple ID mattes 
together using two channels, ID 
and coverage. The ID channel 
encodes the ID of one object 
per pixel. The coverage channel 
encodes how much of the pixel’s 
value is contributed by this object. 
This method is unable to handle 
cases where multiple objects per 
pixel are important (Figure 1f ). 
Multiple objects sharing pixels is 

very common; it occurs due to anti-aliasing, or when objects 
are motion-blurred, out of focus, or transparent. It is possible 
to guess the ID of the second object and use inverted 
coverage, but this covers two objects at most. ID generation 
is also an issue, as the renderer’s internal object ID may not 
stay the same from shot to shot or even from frame to frame.

Our approach

In our approach we expand upon the ID-coverage pair 
technique by using n ranked ID-coverage pairs to add support 
for multiple objects per pixel. We also propose using a hashing 
system for converting organizational monikers from the 3D 
scene, such as object, namespace, and material names.

ID generation
In ID-coverage pairs, the identity of objects, or groupings 
of objects must be represented by a single data value. This 
value is known as the ID code, or ID. The canonical way of 
identifying objects in a 3D scene is to use human-readable 
string labels. Using a hash function, we simply convert these 
already-existing labels into ID codes.

String labels are by definition artist-friendly, because they are 
the same labels artists themselves use to identify objects in 
a scene. They can also be used as indices for accessing 3D 
scene components programmatically. In most productions, 
the string labels do not change from frame to frame or from 
shot to shot. Being stable, readable and indexable, these 
labels are ideal candidates for generating useful ID codes.

Names

In our implementation, we use three 
types of labels to generate three 
separate IDs: namespaces, object 
names, and material names. Objects 
are individual polygon meshes, 
curves, surfaces, etc. Namespaces 
differentiate hierarchical groups 
of objects, such as instances of an 
asset that has been duplicated 
several times. Material names are 
taken from shaders assigned to 
objects.

While object ID mattes and 
namespace ID mattes provide 
access to the scene hierarchy with 
different levels of granularity, 
material ID mattes provide access 
to objects with similar physical 
properties, such as all of the buttons 
on a shirt.

At render time, object and material 
names are typically provided with 
the namespace as a prefix, using 
a separator character. We process 
these full object names (Figure 3) 
into namespaces and short object 
names. The material names are 
processed similarly. 

Hashing

As the renderer samples the image, the three processed 
names are hashed to produce ID codes (Figure 2b). The IDs 
are stored as three arbitrary output variables (AOVs) at the 
sample level. 

IDs can either be computed while sampling, or precomputed 
and stored with the objects they are associated with. In 
our implementation, we have opted to compute IDs while 
sampling. This generally simplifies our system. To allow for 
this, we have chosen the extremely small and fast hashing 
algorithm, DJB2. 

In addition to storing ID codes per-pixel, we also store the 
processed names in a manifest, which allows us to recover the 
full string names from the ID codes using a reverse lookup. 
Using the manifest, we can provide descriptive names for ID 
mattes and are able to index specific objects within the 3D 
scene.

Figure 3: Names as 
found in a scene, 
processed to IDs 
(represented by col-
ors). Two copies of 
a “bunny” asset are 
present.
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Figure 2: Samples on a pixel grid (a) have IDs computed and stored as an AOV (b). The samples are weight-
ed using a filter kernel (c). The sample weights for each ID are ranked (d). In this example, orange is ranked 
highest. The weights will be the coverage values.   
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Figure 1: Given a 
beauty render (a) 
an RGBA matte (b) 
is used to generate 
an ID matte (c) by 
isolating one chan-
nel. Object IDs (d) 
and coverage (e) are 
used to generate an 
ID matte for any ob-
ject, with artifacts (f). 
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Filtering and encoding
The data contained in the three ID AOVs (Figure 4) is 
processed by a ranking sample filter. This algorithm produces 
a mapping from ID values to weights in the pixel. It uses an 
interchangeable filter kernel for weighting. Any filter kernel 
used to filter the “beauty” image can be reused by our ranking 
filter, allowing our extracted mattes to match the “beauty” 
results.

To process a pixel, we compute a table of weights per ID, and 
then rank the IDs by weight. We create the table by iterating 
through all samples which contribute to the pixel. The weight 
of each sample is computed using an arbitrary filter kernel, 
such as Gaussian or Blackman-Harris (Figure 2c). The weight 
is then added to the row of the table that contains a matching 
ID value. If no match is found, a new ID is added to the table.

In the case that a sample represents a partially transparent 
object, the sample will contain a number of sub-samples, each 
with an ID and opacity value. The weight of each subsample 
is the product of its own opacity, the combined transparency 
of the sub-samples in front of it, and the result of the filter 
kernel. Combined transparency can be computed as the 
product of one minus opacity, over the set of sub-samples.

We treat the background of the scene as a null ID, signifying 
empty samples. It is used when a sample does not collide 
with an object or only collides with transparent objects.

Once all samples have been computed, the IDs are ranked by 
the absolute value of their accumulated weights. This ensures 
that only the IDs with the lowest weights are discarded if the 
number of ID-coverage pairs is smaller than the number of 
IDs in the table.

Encoding

We use multi-channel OpenEXR files to encode the data. Each 
of our three AOVs is stored in a separate file, which includes 
an arbitrary number of ID-coverage pairs and a manifest. Each 
ID-coverage pair represents one rank, and one RGBA image 
can contain two ranks in its four channels. The manifest is 

simply a list of the processed names used to create the IDs 
and is stored as metadata.

The depth value, or the number of ranks stored, can be set 
to whatever is required. Each successive ID-coverage depth 
layer tends to contain fewer objects than the previous. As a 
result, each layer tends to be more compressible than the 
previous, and increasing depth to accommodate localized 
complexity is not very costly.

In our implementation, depth can be set by artists in 3D. The 
default value is six, which is almost always sufficient in practice. 
Although it is not required, we store a conventionally-filtered 
RGB version to help artists visualize the ID data. 

Matte extraction 
Matte extraction is straightforward (Figure 5) and compu-
tationally inexpensive. Given an ID value, iterate through 
the ID-coverage pairs. If the ID for a pixel matches the given 
value, the associated coverage value is the matte value for 
that pixel, and further pairs do not need to be checked. 

To extract combined mattes for multiple specified IDs, iterate 
through the ID coverage pairs. If the ID for a given pixel 
matches any of the specified IDs, add the associated coverage 
value to the matte value for that pixel. 

Implementation details

A “keyable” RGB image is constructed in the compositing 
software (Figure 4). This image’s red and green channels are 
the conventionally-filtered versions of the ID data. The blue 
channel is the ID channel from the first (highest ranked) ID-
coverage pair. When sampling a color for this “keyable” image 
using an eye-dropper, the resulting blue channel is used as 
the ID for extraction. 

Since our system includes a bidirectional mapping between 
ID values and object names, the tools can easily provide a 
list of selected object names to artists and can also accept 
lists of names as input. Artists can generate lists of names 
interactively, using the eye-dropper tool to select and deselect 
individual objects.

The lists of names generated in 2D not only allow for clear 
communication with the 3D artist, but also can be used as 
an index to apply changes directly to the 3D scene. This 
workflow can be used to visualize changes to a 3D scene more 
quickly than the usual approach of tweaking parameters and 
rendering previews. Changes to a 3D scene can be tested 
in motion or under variable lighting, without having to re-
render a sequence of frames for every round of edits. When 
finished, the 2D adjustments can be applied to the shaders.

Since deploying the toolset, we have received positive 
feedback from 3D artists and 2D artists alike. We have found 
that artists are using ID mattes where they previously would 
have resorted to other techniques, such as keying, rotoscopy, 
or requesting changes in 3D. We have also seen larger 
workflow benefits. Previously we would see a period at the 
end of jobs where 2D artists would have to ask 3D artists for 
more and more ID mattes. We no longer see this pattern. All 
required mattes can be trivially extracted from our images. As 
such, this is a production-proven replacement for practically 
all ID mattes.
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Figure 5: Three ranks of IDs (a) are tested for pixels matching an exact value (b). The associated cover-
age channels (c) are isolated to the region defined by the matching ID pixels (d). The sum of the isolated 
coverage values from each rank is the extracted matte (e). The same area of the “beauty” render (f) for 
comparison.

Figure 4: Three instances of the “keyable” image presented to artists, with matte selections in white, from the object IDs (a), namespace IDs (b), and material IDs (c), 
extracted by “keying” a leaf.
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